Multi-Criteria-Decision-Analysis (MCDA) tool for Rabies project managers

Victor J Del Rio Vilas WHO, SEARO, New Delhi, India University of Surrey, Guildford, UK Centre for Universal Health, Chatham House, London, UK

MERACON, 26 February 2021

The background

- Research on the sustainability of rabies control programmes remains a critical gap (WHO, 2013; Rupprecht et al., 2017; Wallace et al., 2017).
- Tools to support efficient allocation of resources a recommendation by national programme managers (in PAHO)

Another tool in the toolbox

- Premise: competition is good.
- We introduce a model-driven decision support system (DSS) to support resource allocation for capacity building and maintenance
 - The model was built using multi-criteria decision analysis (MCDA)
- Advantages:
 - Easy conceptualization
 - A type of expert driven models
 - Can capture 'soft' capacities (e.g. coordination)
 - Let's see what weights our SMEs allocate to these capacities
 - Capacities are weighted to reflect trade-offs

The model

- To support decisions involving multiple conflicting objectives
- Our MCDA approach based upon Multi-Attribute Utility Theory (Keeney & Raiffa, 1993)
- Appropriate in generating an aggregated scoring of a health system's overall capability.
- MAUT builds upon decision theory and measurement theory (Keeney & Raiffa, 1993; von Winterfeldt & Edwards, 1986) and follows normative standards for rational decision making.
- MAUT models follow clearly prescribed and psychometrically valid protocols for the elicitation of preferences that minimize the effect of potential cognitive biases (von Winterfeldt & Edwards, 1986; Montibeller & von Winterfeldt, 2015).

Model building

Stage #	Stage	Details	
1	Definition of fundamental	Canine-mediated rabies control and elimination.	
	objectives and scenarios	Scenarios:	
		1. Endemic vs. rabies free	
		2. Investment vs. de-investment.	
2	Identification of experts	Six international rabies experts contributing to model	
		development were identified.	
3	Identification and	Construction of a value tree (see Figure 1) containing	
	definition of criteria	11 capabilities and 30 sub-capabilities, which	
		exhaustively reflect capabilities within a rabies control	
		programme.	
4	Characterization of criteria	Elicitation of criterion-specific value functions from	
		experts using MACBETH (Bana e Costa et al., 2012)	
5	Definition of weights	Elicitation of criterion-specific weights from experts	
		using MACBETH (Bana e Costa et al., 2012)	
6	Identification of	These are the options to assess or rank. In our rabies	
	alternatives	case: rabies control programmes at any administrative	
		or geographical level, e.g. districts, countries.	

Model components

What does it do?

- Returns
 - Country score
 - Capacity specific scores
 - Capacity specific contributions

Area Capability Value

60

A simple portfolio DSS

Investment portfolio 1 ^a	Investment portfolio 2 ^b
• Increase proportion of exposed patients that	• Increase border controls from 10% to 50%
receive PEP from 40% to 80%	of dogs
• Increase dog vaccination coverage from	• Increase awareness leading to PEP seeking
60% to 70%.	behaviour by the community from Level 3
• Increase border controls from 10% to 50%	to Level 5.
of dogs	• Increase coordination among contiguous
	areas from Level 3 to Level 5
Implementation costs: US\$180,000	Implementation costs: US\$105,000

- Portfolio1 => capacity of 50.9 leading to a VFM=19.44
- Portfolio2 => capacity of 51.3 leading to a VFM= 37.14 (1.91 times more VFM)

Thank you